Title Promoter Affiliations Abstract "CycloPUR – Fundamental insights in reversible polymerization of polyurethanes." "Lukasz Pazdur" "Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS), Biochemical Wastewater Valorization & Engineering (BioWaVE)" "Polyurethanes (PU) are versatile group of polymers, being used increasingly in diverse applications; for instance in mattresses, building foams, automotive and adhesives. PU is a cross-linked polycondensation polymer, in which polyols (polyhydroxyl alcohols) react with highly reactive diisocyanates. As a thermoset (they do not have a melting point), PU is difficult to recycle, and the current state-of-the-art mechanical recycling results in low-value materials. Nonetheless, chemolysis (chemical depolymerization) has been explored since decades as an alternative, yet was only commercially developed for polyol recovery. The absence of a working technology for recovery of diisocyanate derivatives is largely due to the complexity of these molecules, and a lack of knowledge regarding their chemical fate in a chemolysis process. The proposed STIMPRO aims at understanding how various isocyanate derivatives are formed, and how they react upon alcoholysis, by experiments using model monomers. This knowledge, together with experimental and computational insights in mixing/solubility, will be exploited to create a bottom-up chemolysis process for model polyurethanes. The outcome of the proposed study will be used in subsequent chemolysis of realistic waste polyurethanes, with recovery of both monomers as significant technological novelty. Additionally, the resulting knowledge may be transferred in the future formulation of new polyurethanes with biobased alternative monomers" "Combined process of Steam Explosion and Microbial detoxification for improved PREtreatment of lignocellulose biomass (SEMPRE)." "Iris Cornet" "Biochemical Wastewater Valorization & Engineering (BioWaVE)" "During the thermochemical pretreatment biotechnological production of chemicals from the polysaccharides in lignocellulose, a solid fraction is obtained, consisting mainly of cellulose, and a lignin waste stream, the so-called, xylose rich fraction (XRF). XRF contains some residual sugar, toxic lignin-derived phenolic and sugar-derived furans. The goal of the research project is to investigate a technique to obtain almost complete removal of the lignin waste stream by using lipid producing bacteria, i.e., Rhodococcus sp. Rhodococcus is known to be able to metabolise phenol compounds. However to succeed, some hurdles have to be taken. (i) The furans and some phenolics can be toxic to the microorganism, (ii) repolymerisation of the lignin can occur (iii) the lignin is probably not completely converted, (iv) oligomers of lignin and lignin cellulose complexes can still be present, (v) it is not known if the Rhodococcus can degrade these oligomers. By analysis of the sugars, furans, phenolics, and the nature of the oligomers or particles, insight can be gained. Based on this knowledge, a toolbox of techniques to solve this will be applied, i.e. adaptation of the microorganism, commercial cellulases and laccases, alfa-naphtol to prevent repolymerisation of the lignin, using other bacteria, …." "Detoxification ability of Rhodococcus sp. on the lignin-rich waste stream after steam-explosion (DARLignin)." "Iris Cornet" "Biochemical Wastewater Valorization & Engineering (BioWaVE)" "During the thermochemical pretreatment biotechnological production of chemicals from the polysaccharides in lignocellulose, a solid fraction is obtained, consisting mainly of cellulose, and a lignin waste stream, the so-called, xylose rich fraction (XRF). XRF contains some residual sugar, toxic lignin-derived phenolic and sugar-derived furans. The goal of the research project is to investigate a technique to obtain almost complete removal of the lignin waste stream by using lipid producing bacteria, i.e., Rhodococcus sp. Rhodococcus is known to be able to metabolise phenol compounds. However to succeed, some hurdles have to be taken. (i) The furans and some phenolics can be toxic to the microorganism, (ii) repolymerisation of the lignin can occur (iii) the lignin is probably not completely converted, (iv) oligomers of lignin and lignin cellulose complexes can still be present, (v) it is not known if the Rhodococcus can degrade these oligomers. By analysis of the sugars, furans, phenolics, and the nature of the oligomers or particles, insight can be gained. Based on this knowledge, a toolbox of techniques to solve this will be applied, i.e. adaptation of the microorganism, commercial cellulases and laccases, alpha-naphtol to prevent repolymerisation of the lignin, using other bacteria, …. The present project focuses on the first part of this research, namely characterizing the xylose-containing waste stream and investigating the toxicity of the individual components for Rhodococcus." "Study the role of cell death in organ injury and/of degeneration." "Tom Vanden Berghe" Pathophysiology "Unprotected iron can rust due to the attack of oxygen. Similarly, in our body, oxidative stress can kill cells in an iron-dependent way, which can give raise to organ injury or degeneration. This newly discovered type of cell injury or necrosis is referred to as ferroptosis. The study of how this type of cell death works at the molecular levels gains a lot of interest, due to its assumed high clinical relevance. On the one hand, our research focusses on using ferroptosis or 'biological rust' to eradicate cancer such as neuroblastoma using nanomedicinal approaches. On the other hand, blocking ferroptosis using small compounds is intensively investigated in an attempt to interfere with e.g. acute organ failure in intensive care patients or patients with chronic degenerative diseases. This work is imbedded in an interdisciplinary approach and occurs in collaboration with experts and physicians in the field." "Development of novel TCO probes for pretargeted intracellular PET imaging." "Koen Augustyns" "Molecular Imaging and Radiology (MIRA), Molecular Imaging, Pathology, Radiotherapy & Oncology (MIPRO), Vienna University of Technology, Medicinal Chemistry (UAMC)" "Radiolabeling of monoclonal antibodies (mAbs) is a powerful preclinical and clinical research tool that finds applications in diagnostic as well as in prognostic and therapeutic settings. Positron Emission Tomography (PET) differs from traditional imaging in that probes known as radiotracers carrying a radioisotope are used to visualize, characterize, and quantify biological processes in vivo. However, despite their attractive properties radiolabeled mAbs have a few important shortcomings. One of the most critical ones is their long circulation time in the body associated with low target to non-target ratios, thus requiring the use of long lived isotopes which yields high radiation dose to the patient. A solution for this problem is offered by pretargeting based on bioorthogonal chemistry. This allows in vivo imaging of the target with superior image contrast and reduced radiation doses. An additional challenge is that many mAbs are internalized upon binding to their target on the cell surface, before the pretargeting reaction. To overcome this issue, this project aims at developing a pretargeted intracellular PET imaging strategy. We will develop novel fluorinated trans-cyclooctene analogues (TCOs) and characterize their potential for pretargeted intracellular imaging using an innovative approach of ""turn-on"" FluoroBOT labeled mAbs. Finally, following optimization of radiochemistry, the 18F-TCO will be used in an in vivo imaging study." "Design and synthesis of organic semiconductors for nearinfrared photodetection with bulk heterojunction organic cavity devices" "Wouter MAES" "Materials Chemistry, Materials Physics, Organic and Bio-polymer Chemistry" "Blending organic electron donors and acceptors yields intermolecular charge transfer (CT) states with additional optical transitions below their optical gaps. In organic photovoltaics, such CT states play a crucial role and they limit the operating voltage. Due to its extremely weak nature, direct intermolecular CT absorption often remains undetected and unused for photocurrent generation. However, the negligible external quantum efficiency in the spectral region of CT absorption can substantially be increased through the use of optical cavities, allowing narrow-band detection with substantial quantum efficiencies and resonance wavelengths extending into the nearinfrared (NIR). The broad spectral tunability via simple variation of the cavity thickness makes this novel, flexible and potentially visibly transparent device principle highly suitable for integrated low cost (spectroscopic) NIR photodetection. Despite the high promises of this innovative concept, dedicated frontier research is required to further optimize the device output and to elucidate its fundamental limitations. In my PhD project, the emphasis will be on the development of high-quality (high-HOMO) electron donor and (low-LUMO) electron acceptor materials and their (basic) cavity device analysis, while more in-depth device, photophysics and blend nanomorphology studies will be conducted in collaboration with partner groups, with the final goal to unravel structure-solution processing-photodetector relations." "Development of novel cell death PET imaging probes for early treatment response assessment." "Sigrid Stroobants, Leonie Wyffels" "Molecular Imaging and Radiology (MIRA), Medicinal Chemistry (UAMC), Molecular Imaging, Pathology, Radiotherapy & Oncology (MIPRO)" "Apoptosis or programmed cell death plays a major role not only in the pathogenesis but also in the treatment of cancer. In recent years, a variety of novel cell death inducing molecular cancer therapies have entered the clinic. Although many demonstrated their potential as effective treatment options in several types of cancer, costs to patients and the healthcare system are often staggering. Moreover, most anti-cancer treatments are linked to toxicity to healthy tissues. Early objective and accurate evaluation of tumor response to therapy is therefore of great importance. Tumor response assessment based upon the molecular effects of therapies, such as cell death induction, is a promising strategy for early prediction of therapy outcome. The availability of a radiotracer for positron emission tomography (PET) imaging of cell death could offer clinicians a tool to early after onset of treatment predict individualized responses in patients, and aid in personalized and cost-reducing patient care. Activation of caspase-3 and exposure of phosphatidylethanolamine (PE) represent key biomarkers for apoptosis. Currently no caspase-3 selective nor PE targeting PET radiotracers are available. This project therefore aims at developing novel caspase-3 selective and PE targeting radiotracers for PET imaging of cell death. Both cell death targeting strategies will be compared for early in vivo evaluation of response to therapy (immunotherapy and multi-kinase inhibitor treatment in preclinical models of colorectal cancer)." "AirTech'byDesign: Injecting Technology into Urban Design in the battle against Street Canyon Pollution." "Maarten Van Acker" "Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS), Biochemical Wastewater Valorization & Engineering (BioWaVE), Sustainable Energy, Air and Water Technology (DuEL), Research Group for Urban Development" "The poor air quality in our cities is currently at the centre of public debates on health living conditions and at the pinnacle of innovative urban planning and mobility policies. Especially, so-called 'street canyons' represent the most problematic arteries of our cities: these are narrow inner-city roads that are flanked on both sides by a continuous row of (high) buildings. In these street canyons, the air quality is often below the European standards and those of the World Health Organization. Both urban design and technological solutions, such as photocatalyst, have proven to be a powerful tools for improving the air quality and overall health. However, this research is often restricted to a single domain, sector or discipline (either bioengineering or urban design) and is often limited to the analysis of the impact of a single parameter on air quality. Secondly, the most well-known measures focus on the reduction of emissions of pollutants and are situated on a larger scale planning and policy level. At the local scale level of traffic intensive locations and the so-called street canyons, systematic research on the possible contribution of urban design and technological interventions to improve the air quality is lacking. Moreover, a group of pollutants under less public scrutiny, volatile organic carbon (VOC), are less susceptible to traffic regulations. The treatment of paving, walls and facades with a photocatalyst have proven to contribute to improve the air quality. However, in street canyons the airflow rates are often low for an optimal performance of these photocatalysts. Alterations of the urban design (that improve the air circulation and the integration of UV lightning) can seek VOC abatement in urban street canyons with minimized environmental burden. In conclusion, in terms of air quality on the level of street canyons, there exists a fundamental disciplinary schism between environmental and urban design sciences. Dealing with the spatial distribution of air pollution and high threshold to bridge technological innovation with urban planning, this research project aims to combine environmental and design sciences. Therefore, the Research group for Urban Development (Design Sciences), DuEL and BioGEM (Engineering Sciences) decided to team up to tackle together this pregnant challenge. The scientific challenge grasped in this project is threefold: (1) Understand the spatial and molecular distribution of VOC in urban environment, with focus on street canyons, (2) Maximize the effect of urban design changes to improve the health effects of street canyons by incorporating photocatalytic abatement technologies; (3) Formulate design guidelines for improvement of air quality in street canyons based on LCA metrics, and extrapolate the methodology to future technological improvements. Together these challenges constitute an opportunity to significantly lower the threshold for future developments to improve the health conditions in street canyons. Divided over four Work Packages and four years, this multidisciplinary approach of this challenge calls for a combination of methodologies, ranging from literature review, to research by design, over modelling and case study research. The Turnhoutsebaan in Antwerp is selected as case study, being representative for typical Flemish street canyons in terms of structural characteristics (length, height over width ratio), traffic density, demonstrated high air pollution levels and the availability (or lack) of green infrastructure." "Living the Granular Life! Microbial ecology of biological phosphorus removal in granular sludge systems." "Jan Dries" "Biochemical Wastewater Valorization & Engineering (BioWaVE)" "Aerobic granular sludge (AGS) represents a true revolution in the field of biological wastewater treatment with significant advantages in comparison to conventional activated sludge, such as low energy use, small footprint, process efficiency, recovery of biopolymers & phosphorus...).The granulation process relies on the specific metabolism of carbon-storing bacteria, such as polyphosphate accumulating organisms (PAO). The most intensively studied PAOs in AGS are Accumulibacter species, but these bacteria have a very narrow substrate range (i.c. the volatile fatty acids VFA acetate and propionate). Other abundant putative PAOs using broader substrate ranges have been identified in (conventional) biological wastewater treatment systems, but their role in granulation and biopolymer formation remains unexplored.The main objective of the current proposal is to investigate (1) the formation of AGS, and (2) the production of the valuable gel-forming alginate-like extracellular polysaccharides (ALE), in well-defined enrichments of putative PAOs, other than Accumulibacter, by applying carbon substrates other than the VFAs acetate and propionate. Advanced microbial analyses, i.e. quantitative PCR (qPCR) and 16S rRNA gene amplicon sequencing analysis, will be used to monitor taxonomic composition of the microbial community in the sludge during the enrichments.The results of the project will have a significant impact on the development of the aerobic granular sludge technology. The results will help define the application potential of the technology, by pointing out the type of wastewaters that can be treated. Increased knowledge of the key PAOs involved in granulation is also very useful in view of the optimization of the treatment process as it allows tuning the reactor operation in favor of the desired PAO." "Enzymatic reactions in NADES as new green media: activity and substrate/product solvation effects." "Pieter Billen" "Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS), Biochemical Wastewater Valorization & Engineering (BioWaVE)" "This proposal aims at demonstrating the suitability and elucidating the effect of new green solvent media, natural deep eutectic solvents (NADES), on enzymatic reactions. NADES are eutectic mixtures of two or more biological primary metabolites (saccharides, amino and other organic acids, polyols, urea, choline) that are liquid at or slightly above room temperature, due to networking hydrogen bond interactions. Although they have been investigated earlier as green extraction media, reports on their use for enzymatic reactions are limited. For the first time, we will investigate their influence on enzymatic reactions by disaggregating the following effects: solvation energy, mass transfer in bulk and enzyme-substrate-intermediates stability. A well-known enzymatic conversion, i.e. deacetylation of a crude mannosylerythritol lipid (MEL) mixture aided by Novozym 435 (a commercial lipase), will be performed in selected NADES as a case example. Although no multi-parametric regression modeling will be done, qualitative (and semi-quantitative) insights will be gathered through coupling parametric solubility modeling (Hansen model, with experimental validation and input) with physicochemical characterization (viscosity, surface tension) of NADES systems, and concentration (substrate, enzyme) and temperature dependent kinetic experiments and modeling. The anticipated outcome of the project is a clear indication of enzymatic performance in fit for purpose NADES, and a breakdown of marginal efficiency change into solvation, activity and mass transfer differences with respect to traditional organic solvent systems."