< Back to previous page

Publication

SPX4 acts on PHR1-dependent and -independent regulation of shoot phosphorus status in Arabidopsis

Journal Contribution - Journal Article

Phosphorus (P) is an essential macronutrient for all living organisms and limits plant growth. Four proteins comprising a single SYG1/Pho81/XPR1 (SPX) domain, SPX1 to SPX4, are putative phosphate-dependent inhibitors of Arabidopsis (Arabidopsis thaliana) PHOSPHATE STARVATION RESPONSE1 (PHR1), the master transcriptional activator of phosphate starvation responses. This work demonstrated that SPX4 functions as a negative regulator not only of PHR1-dependent but also of PHR1-independent responses in P-replete plants. Transcriptomes of P-limited spx4 revealed that, unlike SPX1 and SPX2, SPX4 also modulates the shoot phosphate starvation response, but not short-term recovery after phosphate re-supply. In roots, transcriptional regulation of P status is SPX4 independent. Genes mis-regulated in spx4 shoots intersect with both PHR1-dependent and PHOSPHATE2-dependent signaling networks associated with plant development, senescence and ion / metabolite transport. Gene regulatory network analyses suggested that SPX4 interacts with transcription factors other than PHR1, such as SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 and ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN55, known regulators of shoot development. Transient expression studies in protoplasts indicated that PHR1 retention in the cytosol by SPX4 occurs in a dose- and P-status-dependent manner. Using a luciferase reporter in vivo, SPX4 expression kinetics and stability revealed that SPX4 is a short-lived protein with P-status-dependent turnover. SPX4 protein levels were quickly restored by phosphate re-supply to P-limited plants. Unlike its monocot ortholog, At-SPX4 was not stabilized by the phosphate analogue phosphite, implying that intracellular P status is sensed by its SPX domain via phosphate-rich metabolite signals.
Journal: Plant Physiology
ISSN: 0032-0889
Issue: 1
Volume: 181
Pages: 332 - 352
Publication year:2019
Keywords:Plant sciences