< Back to previous page

Publication

A Route to Unusually Broadband Plasmonic Absorption Spanning from Visible to Mid-infrared

Journal Contribution - Journal Article

© 2019, Springer Science+Business Media, LLC, part of Springer Nature. In this paper, a route to ultra-broadband absorption is suggested and demonstrated by a feasible design. The high absorption regime (absorption above 90%) for the suggested structure ranges from visible to mid-infrared (MIR), i.e., for the wavelength varying from 478 to 3278 nm that yields an ultra-wide band with the width of 2800 nm. The structure consists of a top-layer-patterned metal-insulator-metal (MIM) configuration, into the insulator layer of which, an ultra-thin 5 nm layer of manganese (Mn) is embedded. The MIM configuration represents a Ti-Al2O3-Ti tri-layer. It is shown that, without the ultra-thin layer of Mn, the absorption bandwidth is reduced to 274 nm. Therefore, adding only a 5 nm layer of Mn leads to a more than tenfold increase in the width of the absorption band. It is explained in detail that the physical mechanism yielding this ultra-broadband result is a combination of plasmonic and non-plasmonic resonance modes, along with the appropriate optical properties of Mn. This structure has the relative bandwidth (RBW) of 149%, while only one step of lithography is required for its fabrication, so it is relatively simple. This makes it rather promising for practical applications.
Journal: Plasmonics
ISSN: 1557-1955
Issue: 5
Volume: 14
Pages: 1269 - 1281
Publication year:2019
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:1
CSS-citation score:1
Authors:International
Authors from:Higher Education
Accessibility:Closed