< Back to previous page

Publication

Response priming evidence for feedforward processing of snake contours but not of ladder contours and textures

Journal Contribution - Journal Article

In contour integration, increased difficulty in detection and shape discrimination of a chain of parallel elements (a ladder contour) compared to collinear elements (a snake contour) suggests more extensive processing of ladders than of snakes. In addition, conceptual similarities between ladders and textures - which also involve grouping of parallel elements - raises the question whether ladder and texture processing requires feedback from higher visual areas while snakes are processed in a fast feedforward sweep. We tested this in a response priming paradigm, where participants responded as quickly and accurately as possible to the orientation of a diagonal contour in a Gabor array (target). The diagonal was defined either by a snake, ladder, texture, or a continuous line. The target was preceded with varying stimulus onset asynchrony (SOA) by a prime that was either a snake, ladder, or texture, and was consistent or inconsistent to the response demands of the target. Resulting priming effects clearly distinguished between processing of snakes, ladders, and textures. Effects generally increased with SOA but were stronger for snakes and textures compared to ladders. Importantly, only priming effects for snakes were fully present already in the fastest response times, in accordance with a simple feedforward processing model. We conclude that snakes, ladders, and textures do not share similar processing characteristics, with snakes exhibiting a pronounced processing advantage.
Journal: Vision Research
ISSN: 0042-6989
Volume: 126
Pages: 174 - 182
Publication year:2016
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:1
CSS-citation score:1
Authors:International
Authors from:Higher Education