< Back to previous page

Publication

Phosphate binding by natural iron-rich colloids in streams

Journal Contribution - Journal Article

Phosphorus (P) in natural waters may be bound to iron (Fe) bearing colloids. However, the natural variation in composition and P binding strength of these colloids remain unclear. We related the composition of "coarse colloids" (colloids in the 0.1-1.2 μm size range) in 47 Belgian streams to the chemical properties of the streamwater. On average, 29% of the P in filtered (<1.2 μm) samples of these streams is present in coarse colloids. The concentration of Fe-rich colloids in streams decreases with increasing water hardness and pH. The P bearing colloids in these streams mostly consist of Fe hydroxyphosphates and of Fe oxyhydroxides with surface adsorbed P, which is underpinned by geochemical speciation calculations. In waters with molar P:Fe ratios above 0.5, only a minor part of the P is bound to coarse colloids. In such waters, the colloids have molar P:Fe ratios between 0.2 and 1 and are, therefore, nearly saturated with P. Conversely, in streams with molar P:Fe ratios below 0.1, most of the P is bound to Fe-rich colloids. Equilibration of synthetic and natural Fe and P bearing colloids with a zero sink reveals that colloids with low molar P:Fe ratios contain mostly nonlabile P, whereas P-saturated colloids contain mostly labile P which can be released within 7 days. Equilibration at a fixed free orthophosphate activity shows that the Fe-rich colloids may bind only limited P through surface adsorption, in the range of 0.02-0.04 mol P (mol Fe)(-1). The P:Fe ratios measured in naturally occurring Fe and P bearing colloids is clearly higher (between 0.05 and 1). These colloids are therefore likely formed by coprecipitation of P during oxidation of Fe(II), which leads to the formation of Fe hydroxyphosphate minerals.
Journal: Water Research
ISSN: 0043-1354
Volume: 98
Pages: 326 - 333
Publication year:2016