< Back to previous page
Publication
Multisensing Wearables for Real-Time Monitoring of Sweat Electrolyte Biomarkers During Exercise and Analysis on Their Correlation With Core Body Temperature
Journal Contribution - Journal Article
Sweat secreted by the human eccrine sweat glands can provide valuable biomarker information during exercise. Real-time non-invasive biomarker recordings are therefore useful for evaluating the physiological conditions of an athlete such as their hydration status during endurance exercise. This work describes a wearable sweat biomonitoring patch incorporating printed electrochemical sensors into a plastic microfluidic sweat collector and data analysis that shows the real-time recorded sweat biomarkers can be used to predict a physiological biomarker. The system was placed on subjects carrying out an hour-long exercise session and results were compared to a wearable system using potentiometric robust silicon-based sensors and to commercially available HORIBA-LAQUAtwin devices. Both prototypes were applied to the real-time monitoring of sweat during cycling sessions and showed stable readings for around an hour. Analysis of the sweat biomarkers collected from the printed patch prototype shows that their real-time measurements correlate well (correlation coefficient >= 0.65) with other physiological biomarkers such as heart rate and regional sweat rate collected in the same session. We show for the first time, that the real-time sweat sodium and potassium concentration biomarker measurements from the printed sensors can be used to predict the core body temperature with root mean square error (RMSE) of 0.02 degrees C which is 71% lower compared to the use of only the physiological biomarkers. These results show that these wearable patch technologies are promising for real-time portable sweat monitoring analytical platforms, especially for athletes performing endurance exercise.
Journal: IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS
ISSN: 1932-4545
Issue: 4
Volume: 17
Pages: 808 - 817
Publication year:2023
Keywords:SENSOR, Electrical & electronic engineering, Biomaterials & bioengineering
Accessibility:Closed