< Back to previous page

Publication

A H258Y mutation in subunit B of the succinate dehydrogenase complex of the spider mite Tetranychus urticae confers resistance to cyenopyrafen and pyflubumide, but likely reinforces cyflumetofen binding and toxicity

Journal Contribution - Journal Article

Succinate dehydrogenase (SDH) inhibitors such as cyflumetofen, cyenopyrafen and pyflubumide, are selective acaricides that control plant-feeding spider mite pests. Resistance development to SDH inhibitors has been investigated in a limited number of populations of the spider mite Tetranychus urticae and is associated with cytochrome P450 based detoxification and target-site mutations such as I260 T/V in subunit B and S56L in subunit C of SDH. Here, we report the discovery of a H258Y substitution in subunit B of SDH in a highly pyflubumide resistant population of T. urticae. As this highly conserved residue corresponds to one of the ubiquinone binding residues in fungi and bacteria, we hypothesized that H258Y could have a strong impact on SDH inhibitors toxicity. Marker assisted introgression and toxicity bioassays revealed that H258Y caused high cross resistance between cyenopyrafen and pyflubumide, but increased cyflumetofen toxicity. Resistance associated with H258Y was determined as dominant for cyenopyrafen, but recessive for pyflubumide. In vitro SDH assays with extracted H258 mitochondria showed that cyenopyrafen and the active metabolites of pyflubumide and cyflumetofen, interacted strongly with complex II. However, a clear shift in IC50s was observed for cyenopyrafen and the metabolite of pyflubumide when Y258 mitochondria were investigated. In contrast, the mutation slightly increased affinity of the cyflumetofen metabolite, likely explaining its increased toxicity for the mite lines carrying the substitution. Homology modeling and ligand docking further revealed that, although the three acaricides share a common binding motif in the Q-site of SDH, H258Y eliminated an important hydrogen bond required for cyenopyrafen and pyflubumide binding. In addition, the hydrogen bond between cyenopyrafen and Y117 in subunit D was also lost upon mutation. In contrast, cyflumetofen affinity was enhanced due to an additional hydrogen bond to W215 and hydrophobic interactions with the introduced Y258 in subunit B. Altogether, our findings not only highlight the importance of the highly conserved histidine residue in the binding of SDH inhibitors, but also reveal that a resistance mutation can provide both positive and negative cross-resistance within the same acaricide mode of action group.
Journal: INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY
ISSN: 1879-0240
Volume: 144
Publication year:2022
Accessibility:Open