< Back to previous page

Publication

The European $CO_{2}$, CO, $CH_{4}$ and $N_{2}O$ balance between 2001 and 2005

Journal Contribution - Journal Article

Globally, terrestrial ecosystems have absorbed about 30% of anthropogenic emissions over the period 200072007 and inter-hemispheric gradients indicate that a significant fraction of terrestrial carbon sequestration must be north of the Equator. We present a compilation of the CO2, CO, CH4 and N2O balance of Europe following a dual constraint approach in which (1) a land-based balance derived mainly from ecosystem carbon inventories and (2) a land-based balance derived from flux measurements are confronted with (3) the atmospheric-based balance derived from inversion informed by measurements of atmospheric GHG concentrations. Good agreement between the GHG balances based on fluxes (1249 ± 545 Tg C in CO2-eq y−1), inventories (1299 ± 200 Tg C in CO2-eq y−1) and inversions (1210 ± 405 Tg C in CO2-eq y−1) increases our confidence that current European GHG balances are accurate. However, the uncertainty remains large and largely lacks formal estimates. Given that European net land-atmosphere balances are determined by a few dominant fluxes, the uncertainty of these key components needs to be formally estimated before efforts could be made to reduce the overall uncertainty. The dual-constraint approach confirmed that the European land surface, including inland waters and urban areas, is a net source for CO2, CO, CH4 and N2O. However, for all ecosystems except croplands, C uptake exceeds C release and us such 210 ± 70 Tg C y−1 from fossil fuel burning is removed from the atmosphere and sequestered in both terrestrial and inland aquatic ecosystems. If the C cost for ecosystem management is taken into account, the net uptake of ecosystems was estimated to decrease by 45% but still indicates substantial C-sequestration. Also, when the balance is extended from CO2 towards the main GHGs, C-uptake by terrestrial and aquatic ecosystems is compensated for by emissions of GHGs. As such the European ecosystems are unlikely to contribute to mitigating the effects of climate change.
Volume: 9
Pages: 2005 - 2053
Publication year:2012