< Back to previous page

Publication

Efficient and stable transduction of dopaminergic neurons in rat substantia nigra by rAAV 2/1, 2/2, 2/5, 2/6.2, 2/7, 2/8 and 2/9

Journal Contribution - Journal Article

Dysfunction of the nigrostriatal system is the major cause of Parkinson's disease (PD). This brain region is therefore an important target for gene delivery aiming at disease modeling and gene therapy. Recombinant adeno-associated viral (rAAV) vectors have been developed as efficient vehicles for gene transfer into the central nervous system. Recently, several serotypes have been described, with varying tropism for brain transduction. In light of the further development of a viral vector-mediated rat model for PD, we performed a comprehensive comparison of the transduction and tropism for dopaminergic neurons (DNs) in the adult Wistar rat substantia nigra (SN) of seven rAAV vector serotypes (rAAV 2/1, 2/2, 2/5, 2/6.2, 2/7, 2/8 and 2/9). All vectors were normalized by titer and volume, and stereotactically injected into the SN. Gene expression was assessed non-invasively and quantitatively in vivo by bioluminescence imaging at 2 and 5 weeks after injection, and was found to be stable over time. Immunohistochemistry at 6 weeks following injection revealed the most widespread enhanced green fluorescence protein expression and the highest number of positive nigral cells using rAAV 2/7, 2/9 and 2/1. The area transduced by rAAV 2/8 was smaller, but nevertheless almost equal numbers of nigral cells were targeted. Detailed confocal analysis revealed that serotype 2/7, 2/9, 2/1 and 2/8 transduced at least 70% of the DNs. In conclusion, these results show that various rAAV serotypes efficiently transduce nigral DNs, but significant differences in transgene expression pattern and level were observed.
Journal: Gene Therapy
ISSN: 0969-7128
Issue: 5
Volume: 18
Pages: 517 - 527
Publication year:2011
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:1
CSS-citation score:2
Authors:International
Authors from:Higher Education
Accessibility:Closed