< Back to previous page

Publication

The Challenge of Converting "Failed Spinal Cord Stimulation Syndrome" Back to Clinical Success, Using SCS Reprogramming as Salvage Therapy, through Neurostimulation Adapters Combined with 3D-Computerized Pain Mapping Assessment

Journal Contribution - Journal Article

Subtitle:A Real Life Retrospective Study

While paresthesia-based Spinal Cord Stimulation (SCS) has been proven effective as treatment for chronic neuropathic pain, its initial benefits may lead to the development of "Failed SCS Syndrome' (FSCSS) defined as decrease over time related to Loss of Efficacy (LoE) with or without Loss of Coverage (LoC). Development of technologies associating new paresthesia-free stimulation waveforms and implanted pulse generator adapters provide opportunities to manage patients with LoE. The main goal of our study was to investigate salvage procedures, through neurostimulation adapters, in patients already implanted with SCS and experiencing LoE. We retrospectively analyzed a cohort of patients who were offered new SCS programs/waveforms through an implanted adapter between 2018 and 2021. Patients were evaluated before and at 1-, 3-, 6- and 12-month follow-ups. Outcomes included pain intensity rating with a Visual Analog Scale (VAS), pain/coverage mappings and stimulation preferences. Last follow-up evaluations (N = 27) showed significant improvement in VAS (p = 0.0001), ODI (p = 0.021) and quality of life (p = 0.023). In the 11/27 patients with LoC, SCS efficacy on pain intensity (36.89%) was accompanied via paresthesia coverage recovery (55.57%) and pain surface decrease (47.01%). At 12-month follow-up, 81.3% preferred to keep tonic stimulation in their waveform portfolio. SCS conversion using adapters appears promising as a salvage solution, with an emphasis on paresthesia recapturing enabled via spatial retargeting. In light of these results, adapters could be integrated in SCS rescue algorithms or should be considered in SCS rescue.

Journal: Journal of Clinical Medicine
ISSN: 2077-0383
Issue: 1
Volume: 11
Publication year:2022
Keywords:SCS programming, high-frequency, mapping software, paresthesia coverage, paresthesia-free waveforms, rescue therapy, salvage algorithm, spatial neural targeting, temporal neural targeting
Accessibility:Open