< Back to previous page

Publication

Adaptive axonal delays in feedforward spiking neural networks for accurate spoken word recognition

Book Contribution - Book Chapter Conference Contribution

Spiking neural networks (SNN) are a promising research avenue for building accurate and efficient automatic speech recognition systems. Recent advances in audio-to-spike encoding and training algorithms enable SNN to be applied in practical tasks. Biologically-inspired SNN communicates using sparse asynchronous events. Therefore, spike-timing is critical to SNN performance. In this aspect, most works focus on training synaptic weights and few have considered delays in event transmission, namely axonal delay. In this work, we consider a learnable axonal delay capped at a maximum value, which can be adapted according to the axonal delay distribution in each network layer. We show that our proposed method achieves the best classification results reported on the SHD dataset (92.45%) and NTIDIGITS dataset (95.09%). Our work illustrates the potential of training axonal delays for tasks with complex temporal structures.
Book: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Number of pages: 1
ISBN:9781728163277
Publication year:2023
Accessibility:Open