< Back to previous page

Project

Unscrambling mixed elements with single atom sensitivity using quantitative scanning transmission electron microscopy.

The goal of this project is to develop and design a powerful method in order to unscramble mixed element nanostructures at the atomic scale in three dimensions (3D). Therefore, novel quantitative measurement tools will be combined with aberration corrected scanning transmission electron microscopy (STEM). Visualisation at the atomic scale in 3D using state-of-the-art STEM is nowadays possible for modellike systems with 1 type of chemical element present. For this purpose counting the number of atoms in each projected atomic column is of great help. However, precise determination of the atomic structure in 3D of hetero-nanostructures is currently limited because of the lack of methods to quantitatively unscramble mixed elements. In this project, atom-counting will be performed for technologically important nanostructures that are more complex than model systems, including systems with adjacent atomic number Z such as Pt-Au, Fe-Co, and Ge-Ga-As. The aim is to quantitatively characterise the number of atoms and atom types of mixed element nanostructures with single atom sensitivity. This highly challenging objective will be reached by a unique combination of physics-based modelling and advanced statistical methods. The outcome of this project will deliver the necessary input for understanding and predicting the properties of complex hetero-nanostructures and to guide the development of new nanomaterials.
Date:1 Oct 2015 →  30 Sep 2019
Keywords:TRANSMISSION ELECTRON MICROSCOPY
Disciplines:Multimedia processing, Biological system engineering, Signal processing