< Back to previous page

Project

Unraveling direct interactions between the airway microbiota and respiratory syncytial virus.

Viruses infecting the respiratory tract encounter a diverse resident airway microbial community (the microbiota). While the majority of research on the host-virus-microbiota nexus focuses on virus and microbiota interplay with host immunity, the impact of airway microbiota on viruses through direct interactions is poorly understood. The goal of this project is to come to a new understanding of how direct microbiota-virus interactions in the airways influence viral pathogenesis using respiratory syncytial virus (RSV) as a model. Innovative targeted isolation of RSV-binding bacterial strains from the airways of infants with RSV disease will be performed, in parallel with an in-depth functional and species-level taxonomic airway microbiome analysis. Focusing on beneficial bacteria, the effects of direct bacterial interactions with RSV will be analyzed using a suite of novel and state-of-the-art in vitro assays tailored to investigating the host-microbiota-virus nexus. Localization and properties of key anti-RSV bacterial compounds will be investigated. The effects observed at microbiome level and in vitro will be aligned with in vivo read-outs in an infant mouse model of RSV infection, to conclude whether they translate into clinically relevant outcomes. Understanding the role of direct interactions between airway microbiota and viruses will add a potentially groundbreaking new dimension to the interplay within the host-virus-microbiota nexus in the respiratory niche.
Date:1 Oct 2021 →  31 Dec 2023
Keywords:MICROBIOME, BACTERIOLOGY
Disciplines:Infectious diseases, Microbiomes, Virology, Molecular and cell biology not elsewhere classified, Bacteriology