< Back to previous page

Project

Translational research on quantitative super-resolution MR imaging.

As defined by the Quantitative Imaging Biomarkers Alliance (QIBA), quantitative imaging aims at extracting "quantifiable features from medical images for the assessment of normal or the severity, degree of change, or status of a disease, injury, or chronic condition relative to normal". However, the lack of widespread consensus and integration in commercial software of quantitative MRI (qMRI) methods have hampered both the direct comparison between results of different research groups as well as the translation of cutting-edge qMRI technology to the clinic. The general aim of this research project is to bridge the gap between qMRI research and clinical applications using the syngo.via Frontier platform from Siemens Healthineers. This platform serves as an integrated research environment for advanced post-processing of medical images, allowing for both the development and the evaluation of algorithms in close collaboration with clinicians. An established group of MRI post-processing algorithms, commonly referred to as super-resolution reconstruction (SRR) techniques, are used to estimate a high-resolution image from an acquired set of low-resolution images, thereby improving the MRI trade-off between signal-to-noise ratio (SNR), spatial resolution and scan time. Specific SRR methods have been developed for high-resolution anatomical MRI, but also for qMRI by integrating quantitative models that enable the estimation of biophysical parameters for tissue characterisation. Although SRR holds applications in a variety of clinical fields, its clinical potential in the context of musculoskeletal (MSK) MRI remains to be thoroughly investigated. Consequently, the specific aim of this research project is twofold: 1. Following the demonstrated feasibility of SRR TSE MRI of the knee, we aim to evaluate the clinical application of the described anatomical SRR technique for accelerated high-resolution isotropic 3D knee MRI by comparison with the current clinical standard. Furthermore, the integration of the SRR post-processing algorithm for MSK MRI on the Siemens syngo.via Frontier platform will be finalized to facilitate clinical evaluation. 2. As previously reported, 3D UTE Spiral VIBE MRI shows great promise for fast T2* mapping of knee structures. To further improve accuracy and precision of the T2* estimation, we aim to develop a quantitative SRR framework for rapid isotropic T2* mapping of the knee, based on both ultra-short echo time (UTE) and multi-echo gradient echo (MEGE) imaging. In light of QIBA's mission, the developed quantitative SRR framework will be used to probe the suitability of the biophysical short and long T2* parameters as biomarkers of MSK tissue structural integrity. More specifically, the framework will be used to assess the severity of anterior cruciate ligaments (ACL) injuries and to evaluate the healing process of reconstructed/repaired ACLs.
Date:1 May 2021 →  30 Apr 2023
Keywords:MAGNETIC RESONANCE IMAGING (MRI)
Disciplines:Medical informatics