< Back to previous page


Thermal hyperspectral material characterization for Art Conservation based on hypercubes.

In the study of historical paintings and more specifically as a preparation for restoration activities of such artefacts, it is of great relevance to investigate which materials and degradation products are present and how these are distributed at or below the painting surface. Commonly used non-destructive in situ methods such as X-ray fluorescence (XRF) and X-ray diffraction (XRD), are only used for spot analyses and require several minutes to record a spectrum from a single sample position, resulting in long scanning times required to record the data hypercubes. As an alternative, thermography inspection, as a non-contact and non-destructive technique is used for material parameter identification but also for art inspection as it is possible to differentiate chemical compounds. Therefore the goal of this research proposal is to improve non-invasive macroscopic material characterization of flat objects, both from an industrial and cultural heritage context, by augmenting existing elemental imaging technology with more species specific imaging of organic and inorganic compounds and this by combining the established X-ray based approaches with IR thermography and hyperspectral (HS) images. A combined X-ray, IR thermography and HS technique eliminates the disadvantages of these techniques and results in a faster measurement and material identification technique with respect to measurement time but also accuracy of the material parameter identification.
Date:1 Jul 2016 →  31 Dec 2017
Disciplines:Multimedia processing, Biological system engineering, Signal processing, Conservation-restoration science