< Back to previous page

Project

Texture control in asymmetric rolling for improved sheet metal formability.

Background
Today material producers face many challenges: rising energy costs, environmental restrictions and ever more stringent customer demands for improved properties and quality. In particular metal producers in Europe face shrinking profit margins on conventional products, e.g. rolled steels and alloys, due to competition from producers in developing economies benefiting from lower cost bases. Thus it is imperative that European producers diversify and develop what are referred to asadvanced materials: materials which have high added-value compared toconventional counterparts or are specifically application engineered [1]. A keystone in the success of this endeavour is the discovery anddevelopment of innovative production techniques. The power of computational hardware and the sophistication of physics based materials science modelling tools have now reached the point that effective research of such new production technologies can be largely carried out through high accuracy simulation [2]. This project proposes to exploit a pioneering physics-based material computational framework to research a promising and innovative processing technique.

Problem Statement
A new material processing technique, cold asymmetric rolling (ASR), hasbeen recently found to be capable of producing sheet alloys with significantly improved properties, by introducing new beneficial crystallographic textures into the material. There are encouraging recent results forenhanced formability of aluminium alloys, and magnetisation properties for steels [35]. The process is additionally attractive to industry as it closely related to conventional rolling. ASR cannot yet be developed in an industrial context due to some fundamental problems:

 * the evolution of deformation fields, texture and microstructure during ASR
   is not understood [6, 7]
 * the process may produce strong heterogeneity in properties such as grain
   orientation, size and shape [8]. This could significantly impact subsequent
   forming behaviour but the causes, specific consequences and a means of control
   are not yet known [9, 10].
 * it is not known how the process parameters influence resulting material
   properties, nor how the process might be optimised it is not yet clearly known
   how properties developed during ASR are modified by subsequent annealing
   (crucial for aluminium alloys)

In essence this project aims to gain scientific insight and find solutions to the above problems by constructing and validating a high accuracy model of the ASR process; specifically it will build on recent fundamental research on (i) ASR and modelling of annealing conducted by the Materials Science and Engineering group at Ghent University (e.g. [11]) and (ii) high efficiency texture evolution and heterogeneous deformation modelling conducted by group ASTRO at MTM KU Leuven, where collaboration with the Scientific Computing group at KU Leuven has resulted ina pioneering computational framework [12] and state-of-the-art physics based plasticity and texture models [13, 14].


References:
  [1] Fredrik Skarp and Lars-Erik Gadde. Problem solving in the upgrading of
      product offerings: A case study from the steel industry. Industrial
      Marketing Management, 37(6):725 737, 2008. 
  [2] TresaM. Pollock. Integrated Computational Materials Engineering: A
      Transformational Discipline for Improved Competitiveness and National
      Security. National Academies Press, 2008. 
  [3] J. J. Sidor, R. H. Petrov, and L. A. I. Kestens. Texture-induced anisotropy
      in asymmetrically rolled aluminium alloys. Advanced Engineering Materials,
      13(10):949954, October 2011. 
  [4] Boo-Hyeon Cheon, Hyoung-Wook Kim, and Jae-Chul Lee. Asymmetric rolling of
      stripcast al-5.5mg-0.3cu alloy sheet: Effects on the formability and
      mechanical properties. Materials Science and Engineering: A, 528(15):5223
      5227, 2011. 
  [5] Leo Kestens, Jurij Sidor, Roumen Petrove, and Tuan Nguyen Minh. Texture
      control in steel and aluminium alloys by rolling and recrystallisation in
      non-conventional sheet manufacturing. Material Science Forum, 715716:8995,
     April 2012. 
  [6] Laszlo S. Toth, Benoit Beausir, Dmitry Orlov, Rimma Lapovok, and Arunansu
      Haldar. Analysis of texture and r value variations in asymmetric rolling
      of if steel. Journal of Materials Processing Technology, 212(2):509 515,
      2012. 
  [7] Suk-Bong Kang, Bok-Ki Min, Hyoung-Wook Kim, David Wilkinson, and Jidong
      Kang.Effect of asymmetric rolling on the texture and mechanical properties
      of AA6111aluminum sheet. Metallurgical and Materials Transactions A,
      36:31413149, 2005. 10.1007/s11661-005-0085-4.
  [8] Jurij Sidor, Roumen H. Petrov, and Leo A.I. Kestens. Deformation,
      recrystallization and plastic anisotropy of asymmetricallyrolled aluminum
      sheets. Materials Science and Engineering: A, 528(1):413  424, 2010.
      Special Topic Section: Local and Near Surface Structure from Diffraction.
  [9] Albert Van Bael, E. Hoferlin, Leo A. I. Kestens, and Paul Van Houtte.
      Side-bulging during tensile tests of if-steels with cross-thickness texture
      gradients. Materials Science Forum, 273275:417424.
 [10] M.Y Huh, Y.S Cho,and O Engler. Effect oflubrication on the evolution of
      microstructure and texture during rolling and recrystallization of copper.
      Materials Science and Engineering: A, 247(12):152  164, 1998. [11] Jurij J. Sidor, Roumen H. Petrov, and Leo A.I. Kestens. Modeling the
      crystallographic texture changes in aluminum alloys during recrystallization.
      Acta Materialia, 59(14):5735 5748, 2011.
 [12] Paul Van Houtte, Jerzy Gawad, Philip Eyckens, Bert Van Bael, Giovanni Samaey,
      and Dirk Roose. A full-field strategy to take texture-induced anisotropy into
      account during FE simulations of metal forming processes. JOM Journal of the
      Minerals, Metals and Materials Society, 63:3743, 2011. 10.1007/s11837-011-0189-9. 16
 [13] P Van Houtte, S. K. Yerra, and A. Van Bael. The facet method: A hierarchical
      multilevel . modelling scheme for anisotropic convex plastic potentials.
      Int. J. Plast., 25:332360, 2009. ISSN 0749-6419.
 [14] Paul Van Houtte, Sai-Yi Li, Marc Seefeldt, and Laurent Delannay. Deformation
      texture prediction: from the taylor model to the advanced lamel model.
      International journal of plasticity, 21:589624, 2005. ISSN:0749-6419. [15] Benot Beausir, Somjeet Biswas, Dong Ik Kim, Lszl S. Tth, and Satyam Suwas.
      Analysis of microstructure and texture evolution in pure magnesium during
      symmetric and asymmetric rolling. Acta Materialia, 57(17):5061  5077, 2009. 

 

Date:3 Oct 2011 →  31 Dec 2019
Keywords:Plastic Metal-Forming Processes, Multi-Scale Modelling
Disciplines:Ceramic and glass materials, Materials science and engineering, Semiconductor materials, Other materials engineering, Metallurgical engineering
Project type:PhD project