< Back to previous page


Remote controlled miniaturized radiotracer injection device for dynamic PET imaging in free running small animals.

In this project, a miniaturized injection device will be developed. The injection device will be carried by a rat and will be operated by remote control to perform an intravenous bolus injection (0.5 ml / min) in the rat via a catheter in the jugular vein. The injection device will be used for the injection of a radio-tracer into the animal while being in the scanner during the dynamic brain imaging of awake, free-running animals. Since access to the scanner is limited due to the small bore size, the injection must be delivered through a miniature injection device that can be carried by the rat. The aim of the project is to be able to extend our previously developed methodology of brain imaging in free-running animals to dynamic scans where the animal is injected while it is in the scanner. Previously, our imaging in awake animals was only performed after the animals were injected outside the scanner. However, these post-injection scans are less useful for quantitative biomedical research in neuroscience. By developing the automated injection device, we will be able to perform the more relevant dynamic PET scans in free-running animals. In this way we can scan free running animals and we can avoid the influence of anesthesia (as used for PET imaging of small animals) on the brain and thus the measurement results. The usability of the injection device will be demonstrated in a dynamic PET test-retest study in rat in which dopamine receptors will be visualized using [11C]raclopride, a D2 receptor antagonist.
Date:1 Apr 2019 →  30 Mar 2020
Disciplines:Other (bio)medical engineering not elsewhere classified, Nuclear imaging, Neurosciences not elsewhere classified