< Back to previous page

Project

Novel methods and 4D-XCT tools for in situ characterisation of materials and their microstructural changes during functional testing.

Fibrous materials are found in biology (e.g. skin, muscle, tendon, ...), but also in industry in the form of composite materials in critical components of the aerospace, automotive and building applications. Not surprisingly, there is a great demand, both clinical and industrial, for an in-depth understanding of the microstructural response of these fibrous materials to external loading parameters defining their elasticity, strength and structural integrity. In this project, a novel experimental 4D characterization toolbox based on X-ray computed tomography (XCT) will be developed, including non-invasive contrast agents and dedicated in situ measurement devices, along with advanced 4D image reconstruction and analysis methods and computational models. Two representative case studies will demonstrate the general applicability of our approach: 3D printed fibre reinforced composites and biological tissues. The proposed 4D characterization approach will allow us to gain crucial insight into the microstructural changes that occur during dynamic functional testing of both types of fibrous materials. In turn, the improved knowledge of the dynamic material behaviour can pave the way towards optimized design and production of novel 3D printed composite materials and towards a more intelligent design of next-generation solutions for tissue restoration and regeneration. The project brings together a multidisciplinary team of experts from three Belgian universities, and will facilitate the translation of the developed 4D characterization toolbox, as well as the individual methodologies, towards industry, hospitals and research centers.
Date:1 Jan 2019 →  31 Dec 2022
Keywords:POROUS MATERIALS
Disciplines:Non-destructive testing, safety and diagnosis
Project type:Collaboration project