< Back to previous page

Project

The 'Non image' forming photoreception in seasonal birds: A possible role in Seasonal neuroplasticity.

Light is an important environmental factor driving important functions in animal physiology through the vision forming circuit or by non-image forming (NIF) brain circuit. NIF in mammals starts with melanopsin (OPN4) containing intrinsically photoreceptive retinal ganglionic cells (ipRGCs), that innervate brain regions regulating sleep, circadian functions, cognition etc. NIF has high sensitivity to blue light wavelength, which activates the melanopsin. Also, light through photoperiodic differences in seasons induces neuroplasticity in song bird's song control system (SCS), which may be hormone independent. We hypothesize that NIF processes underlie this neuroplasticity based on its influence in multiple brain regions not involved in visual system. To test this, we use European starling's, which show extensive SCS neuroplasticity in response to seasons. We want to first demonstrate that a NIF circuit exists in birds using in vivo MRI imaging along with molecular biology techniques with the contribution of eyes and brain in it. Then we propose to modulate the neuroplasticity by directly activating NIF through melanopsin by using blue light. Our results will for the first time link light and neuroplasticity. Melanopsin is also involved in disorders like Alzheimer's, seasonal affective disorder (SAD) and Light at night (LAN) related problems in cities. Thus, light, melanopsin and its influence on neuroplasticity may pave a way for further understanding of neurobiological disorders.
Date:1 Feb 2018  →  30 Sep 2018
Keywords:NEUROPLASTICITY
Disciplines:Multimedia processing, Biological system engineering, Signal processing
Project type:Collaboration project