< Back to previous page

Project

Next generation X-ray metrology for meeting industry standards (MetroFlex).

Advanced manufacturing techniques, often based on computer aided design (CAD) models, are transforming the industrial landscape and offer exciting opportunities for producing tailor-made products with high added-value. At the same time, specifications and quality standards of end products are stringent and therefore sophisticated inspection tools are needed. In an industry 4.0 perspective, inspection occurs preferably inline to enable a rapid remediation of disturbances causing material defects and/or dimensional deviations. Hence, there is a growing demand for fast and flexible 3D metrology solutions in the factories of the future. In this context, X-ray computed tomography (CT) is gaining traction as a non-destructive method to produce extremely detailed images of both internal and external features of complex objects. However, conventional CT inspection approaches typically require many (several hundreds) X-ray projection images from a large number of viewing angles and subsequently a full 3D image reconstruction is performed. This results in a number of limitations: i) due to the lengthy acquisition and reconstruction process, CT is typically performed for offline inspections and R&D activities. Real-time inline CT scanning to achieve a 100% dimensional metrology inspection rate is not possible with the current CT systems. ii) conventional CT systems have a rigid well-defined setup, i.e. requiring either that the object can be put inside the scanner or that the source-detector system can physically rotate 360° around the object. As a result, larger objects such as a wing of an airplane or a partly assembled car cannot be scanned. iii) 3D reconstructed images may suffer from numerous artefacts (due to misalignment, beam hardening, etc.) while the traceability and uncertainty of CT measurements for metrology applications is insufficiently documented. In this project, we propose a radical paradigm shift by breaking with the traditional X-ray 3D metrology workflow through developing a new framework for 3D metrology that addresses the above mentioned problems. If successful, this SBO project will result in a flexible X-ray metrology toolkit to enable fast inline QC during production and to perform inspection tasks of larger parts. The identification of hidden defects and deviations from the nominal geometry during production will help to produce high quality products, as efficiently as possible and with a minimum of waste.
Date:15 Sep 2017 →  14 Sep 2021
Keywords:X-RAY TOMOGRAPHY
Disciplines:Multimedia processing, Biological system engineering, Signal processing
Project type:Collaboration project