< Back to previous page

Project

The isotropic search for and the analysis of the astrophysical stochastic background of gravitational waves.

My project will primarily focus on the search for and the discovery of the astrophysical stochastic gravitational wave background (SGWB) using novel and state-of-the-art data analysis software. In the science run of O4 starting in December 2022 and running for a year, data analysis will be performed actively on strain data. After the science run, the year-long data is combined to increase our chances of finding a hint of the SGWB. Next to that, in this project, I will develop a tool which can help automatically identify spectral artefacts in the frequency domain of the Virgo data and link them to an environmental channel. This will significantly increase our ability to identify such artefacts, as well as understand their origin and possible mitigation actions. During and after O4 I will be at the EGO/Virgo site investigating possible noise sources while "noise hunting". In Italy, I will also contribute to magnetic injections into the Virgo detector where the coupling between magnetic fields and the mirrors is investigated. Next to that, I will also, for the first time, investigate the effects of the buildings on external magnetic signals in the Virgo interferometer. At the end of the project, I will contribute to upgrading the detection statistics and noise models such that a better noise sensitivity of the Virgo detector is achieved in preparation for the next science run O5. That will increase the odds of discovering the stochastic background in O5.
Date:1 Nov 2022 →  31 Oct 2023
Keywords:WAVES
Disciplines:Cosmology and extragalactic astronomy, General relativity and gravitation, Gravitational radiation astrophysics