< Back to previous page

Project

Investigating the potential of the glycolytic enzyme enolase from Trypanosoma evansi as a target for parasite detection and control.

Trypanosoma evansi is a widely spread parasite that causes a debilitating disease called animal trypanosomosis in all types of ungulates (cattle, buffaloes, horses, pigs and deer). Animal trypanosomosis is characterised by weight loss, drastic reductions of draft power, diminished meat and milk production, and, often, death of the infected animals. This severely challenges rearing livestock in the affected areas and heavily weighs on their socio-economic development. The presented research project aims at contributing to the development of novel tools for T. evansi detection and control. First, a new DNA-based assay for the diagnosis of active T. evansi infections has been successfully developed. Second, the use of the antigen-binding fragments of camelid heavy-chain only antibodies (so-called Nanobodies) has allowed the identification of the glycolytic enzyme T. evansi enolase (TevENO) as a potential novel specific biomarker for infection. In addition, because of the central importance of glycolysis for trypanosome survival within the host, TevENO might also have a therapeutic value. Nanobodies will again be employed as research tools to facilitate the discovery of novel diagnostic and therapeutic tools to achieve parasite detection and control by targeting TevENO. Given the heavy socio-economic burden imposed by T. evansi in large regions of the world, it is anticipated that the proposed work will contribute significantly to the battle against animal trypanosomosis caused by this parasite.
Date:15 Jul 2019 →  14 Jul 2020
Keywords:MOLECULAR DYNAMICS, PARASITOLOGY
Disciplines:Proteins, Molecular biophysics, Molecular diagnostics, Parasitology, Structural biology, Biomarker discovery, Drug discovery and development not elsewhere classified