< Back to previous page

Project

Heterostructures of superconducting 2D materials as building blocks for emerging quantum technologies

Junctions of superconducting materials lay the basis for the newest quantum technologies, especially quantum computing (pursued by Google, IBM, Intel,...), with capabilities far beyond classical approaches. However, the needed quantum coherence is severely limited by impurities and roughness at the interfaces in currently fabricated junctions. To resolve this, crystalline 2D materials are explored as alternative building blocks for superconducting junctions, because of their high purity and atomically sharp interfaces in their heterostructures. However, fundamental understanding of how the superconducting state is affected by joining different 2D materials is still lacking. Therefore, a new ab initio framework will be developed in this project, fully characterizing superconductivity in 2D heterostructures in presence of interlayer hybridization and competing quantum phases. This will yield insight into key properties like distribution and quantum tunneling of Cooper pairs across the junction, which lie at the heart of qubit applications. Motivated by the most recent experiments, both vertical and lateral junction architectures will be considered, and optimized through the available degrees of freedom, like twisting and stacking order, use of a buffer material in the junction, and tuning the junction through gating or strain. Such accumulated knowledge is indispensable to further advance and control qubit characteristics and quantum operations based on 2D superconductors.
Date:1 Oct 2022 →  Today
Keywords:2D MATERIALS, HETEROSTRUCTURES, SUPERCONDUCTIVITY, QUANTUM SYSTEMS
Disciplines:Electronic (transport) properties, Magnetism and superconductivity, Surfaces, interfaces, 2D materials, Quantum information, computation and communication, Quantum chemistry