< Back to previous page

Project

Effects of cadmium on growth regulation in maize leaves.

Pollution with cadmium (Cd) caused by historical industrial activity is a serious problem in the Campine region of Belgium. Cd inhibits plant growth and understanding this response may facilitate the growth of plants on polluted soils, its accumulation in and harvest of Cd-containing plant biomass. From a scientific point of view, the response of plant growth to Cd exposure is interesting, as it perturbs specific regulatory mechanisms, including cell cycle regulation, cell wall chemistry and redox regulation. Thereby, the role of these processes in organ growth regulation can be unravelled. By studying the maize leaf growth zone we can combine kinematic analyses of cell division and expansion rates with molecular and physiological studies that are not feasible in the model species Arabidopsis. Using both short- and long-term Cd exposure allows us to unravel signalling events and regulatory interactions in growth regulation. The effects on cell division will be further analysed by flowcytometry and on expansion by measuring cell wall extensibility. The underlying molecular mechanisms will be studied in each zone (division, elongation and maturation) at the transcriptome, metabolite and enzyme levels. Initially, wild-type maize lines are used. Based on the obtained results, mutants perturbed in key pathways will be studied. All data will be integrated using bio-informatics, so that a holistic view of growth regulation in general and its response to Cd in particular is obtained.
Date:1 Jan 2016 →  31 Dec 2019
Keywords:GROWTH REGULATORS IN PLANTS
Disciplines:Plant biology
Project type:Collaboration project