< Back to previous page

Project

Development of an affinity grid for cryo-electron microscopy enabling protein structure determination.

Cryo-electron microscopy (cryo-EM) has evolved tremendously over the last five years, thereby becoming a promising method to gain high-resolution structural information on therapeutically relevant proteins involved in cancer, bacterial or viral infections, or neuropathologies. This rapid evolution has sparked the interest of pharmaceutical companies in cryo-EM, because protein structure information may yield better insights into the functioning of proteins, which can be used to develop better drugs. However, as a result of its success several inefficiencies within the cryo-EM workflow have emerged, especially related to sample preparation. Novel technologies have been proposed to optimize these, but these new techniques (i) often address only a single step within the overall workflow, (ii) are incompatible with other novel solutions or (iii) are difficult to implement by non-expert users. The objective of this PoC study is to revive affinity grids, electron microscopy grids that can be used for on-grid protein purification, and a potential solution to bypass some of the existing bottlenecks. by introducing novel recent developments in nanotechnology. The novel grid will be part of a larger international initiative aimed at developing an integrated workflow for highthroughput cryo-EM.
Date:1 Apr 2019 →  31 Oct 2020
Keywords:CRYO-EM, PROTEIN PURIFICATION, STRUCTURAL BIOLOGY
Disciplines:Biofluid mechanics, Device biomechanics, Other biotechnology, bio-engineering and biosystem engineering not elsewhere classified