< Back to previous page

Project

Creating structural and physico-chemical control to enhance properties of hybrid periodic mesoporous metal phophonates.

Hybrid organic-inorganic materials add organic functionality to inorganic material properties. Attention has shifted from silica based materials towards non-silica hybrid materials. Although a lot of progress has been achieved in surface grafting of organic functional layers, materials with framework incorporated organic groups can induce specific properties not achievable by surface functionalization. Tremendous progress has been reported on hybrid microporous materials such as metal organic frameworks (MOF's). But less attention has gone to mesoporous hybrid metal oxides, prepared by interaction of metal oxide precursors with di-organophosphonic acids (RO)2O-P-R'-P-O (OR)2, intrinsically having the same high potential as the silica based PMO's (periodic mesoporous organosilicates). Research on these periodic mesoporous metal phosphonates is scarcer due to the complexity of controlling the materials properties during template assisted synthesis. We aim at creating the required knowledge to control their structural and physico-chemical properties by revealing the impact of precursor type and amount, synthesis conditions and kinetics of condensation. In addition, developing strategies to solve the often reported need for stabilization. In-depth complementary advanced characterization techniques will be applied to unravel the materials properties correlated to the specific synthesis and stabilization, revealing underlying mechanisms to control their properties and stability.
Date:1 Jan 2017 →  31 Dec 2020
Keywords:PHYSICOCHEMISTRY, MESOPOROUS MATERIALS
Disciplines:Condensed matter physics and nanophysics
Project type:Collaboration project