< Back to previous page


The CMS experiment at the Large Hadron Collider at CERN.

The quest to explore and understand the fundamental building blocks of Nature has intrigued humanity since ever. Revealing the way they build up the matter around us as well as the Universe is the topic of particle physics. Our state-of-the-art theory in particle physics does not provide an empirically verified answer to key questions like how these particles acquire their observed mass nor for the abundance of Dark Matter in the Universe. Experiments are being built to unravel these elements by discovering new physics phenomena beyond our current theory and to measure very precisely the properties of the known phenomena. The Large Hadron Collider at CERN is the unique particle accelerator which is at the forefront of this research by colliding protons at the highest energies. The Compact Muon Solenoid experiment is built and operated by an international consortium of institutions to detect and reconstruct the particle collisions. The Universiteit Antwerpen, the Universiteit Gent and the Vrije Universiteit Brussel have very active teams of researchers that construct, operate and maintain the experiment as well as analysing the accumulated data of the CMS detector in the search for an understanding of the fundamental interactions in Nature. This project embraces all the detector, logistical and operational costs for the Flemish contribution to one of the largest scientific experiments ever.
Date:1 Jan 2013  →  31 Dec 2018
Disciplines:Applied mathematics in specific fields, Condensed matter physics and nanophysics, Elementary particle and high energy physics, Quantum physics
Project type:Collaboration project