< Back to previous page

Project

Improved FAP-radiotheranostics for personalized cancer treatment.

Fibroblast activation protein (FAP) is a serine protease expressed on stromal cells of > 90% of all epithelial cancers, whereas its expression is almost undetected in normal tissues. In addition, FAP expression is highly restricted and transiently increased in adult tissues during wound healing, inflammation or fibrosis in activated fibroblasts. Among the stromal cells, cancer associated fibroblasts (CAFs) having a FAP-positive phenotype have been associated with poor prognosis in multiple cancers. The highly focal expression and cancer-specific distribution of FAP make this protein a promising cancer diagnostic marker and an attractive therapeutic target. Motivated by the success of FAP-targeted positron emission tomography (PET) radiotracers, FAP-targeted radiopharmaceutical therapies are currently heavily investigated. In addition, FAP-targeted radiopharmaceuticals offer the possibility of imaging diagnostics and targeted radionuclide therapy using the same ligand (theranostics), enabling personalized cancer treatment. However, the relatively rapid washout from the tumor and inadequate pharmacokinetics of current FAP ligands represents a major problem for radioligand therapy. Therefore, the goal of this application is to develop FAP-targeting radiotheranostics. Radiotracers will be evaluated in vitro to assess FAP activity and selectivity. Finally, a human cancer mouse model will be used to assess both imaging and therapeutic potential of our FAP- radiotracers. If successful, our strategy will help physicians select patients who can benefit from FAP-targeted radionuclide therapy.
Date:1 Oct 2022 →  Today
Keywords:IMAGING, RADIOPHARMACEUTICALS, RADIODIAGNOSTICS, RADIOTHERAPY
Disciplines:Nuclear imaging, Radiation therapy, Cancer diagnosis, Cancer therapy, Radiopharmacy