< Back to previous page

Publication

Building energy efficient IoT applications using low power wide area networks

Book - Dissertation

In recent years, the Internet of Things (IoT) is recognized as one of the most important areas of future technology and is gaining vast attention from many applications. The goal behind IoT is to connect all devices such as cars, appliances, equipments, and empower the capability to self-report in real-time. This improves efficiency in different applications such as - smart homes, healthcare solutions, smart cities, and smart agriculture. For many of these applications, the lifetime of IoT device is an essential aspect. It implies the focus on: "How much energy is available? Furthermore, how much energy is being used for smooth behavior and service of IoT device?". It becomes even more crucial with the recent report from EU cordis research, stating that about 78 million batteries powering IoT devices will be dumped globally every day by 2025 if nothing is done to improve their lifespan. Hence, there is a growing need to optimize energy consumption and prolong the lifetime of IoT device. One of the significant applications of IoT is agriculture, which is facing ever-increasing pressure to feed the world. This demand and supply gap is getting further burdened due to land and water shortages and the global requirement to preserve natural resources. The demand builds inevitable pressure on farmers, resulting in different sources of stress such as plunging commodity prices, increasing debt, and usage of chemicals. IoT ecosystem carries a high potential in the sphere of agriculture to transform in several aspects, primarily by lowering the production risks. By using various smart devices, farmers can predict better with an improved efficiency that promotes sustainable growth while cutting resources. In this doctoral research, I explore the possibilities of building an energy efficient IoT application using different techniques. I worked on the development of IoT application for precision agriculture in making greenhouse horticulture more efficient and innovative. By extensive deployment of this IoT solution in multiple greenhouses, I realized the challenges, opportunities, and significance of fusing multidisciplinary technologies for building an efficient solution. As a result, research that has been conducted in the past four years by me will give researchers and developers a better understanding of how to build an energy-efficient IoT application, considering the real-time challenges majorly for the use-case of precision agriculture. The published datasets that resulted from greenhouse deployment campaigns will also support the research community with tools to evaluate their methods. In the long run, an energy efficient IoT solution can transform our everyday lives for a better world by promoting growth and protecting the planet.
Number of pages: 168
Publication year:2022
Keywords:Doctoral thesis
Accessibility:Open