< Back to previous page

Publication

A Novel Method for Surface Exploration by 6-DOF Encountered-type Haptic Display towards VIrtual Palpation

Journal Contribution - Journal Article

Surface exploration in virtual reality has a large potential to enrich the user’s experience. It could for example be used to train and simulate medical palpation. During palpation, users tap, indent, and rub the surface of a sample to estimate the underlying properties. However, up to now there is no good approach to render such intricate interaction realistically. This paper introduces 6 degrees of freedom (DoF) encountered-type haptic display technology for simulating surface exploration tasks. Among the different phases of exploration, this work focuses on the ‘in-contact sliding’ phase. Two novel control approaches to render sliding over a virtual surface are elaborated. A first rendering method generates lateral frictional forces as the finger slides over the surface. A second method adjusts the inclination of the end-effector to render tissue properties. With both methods a stiff nodule embedded in a soft tissue was prepared. User experiments were carried out to find proper parameter and intensity ranges and to confirm the feasibility of the new rendering schemes. Participants indicated that both rendering schemes felt realistic. Compared to earlier work, where only the vertical stiffness was altered, lower thresholds to detect and localise embedded virtual nodules were found. Users also made fewer errors in detecting nodule edges. Furthermore, the method that used end-effector inclination allowed faster discovery of the nodule’s edges. It is expected that approaches that combine both rendering methods could provide an even more realistic feel.
Journal: Ieee Transactions On Haptics
ISSN: 1939-1412
Issue: 3
Volume: 14
Pages: 1 - 1
Publication year:2021
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:1
CSS-citation score:1
Authors:International
Authors from:Higher Education
Accessibility:Closed