< Back to previous page

Publication

Ca2+ Signaling and Homeostasis in Mammalian Oocytes and Eggs

Journal Contribution - Journal Article

Changes in the intracellular concentration of calcium ([Ca2+]i) represent a vital signaling mechanism enabling communication between and among cells as well as with the environment. Cells have developed a sophisticated set of molecules, "the Ca2+ toolkit," to adapt [Ca2+]i changes to specific cellular functions. Mammalian oocytes and eggs, the subject of this review, are not an exception, and in fact the initiation of embryo devolvement in all species is entirely dependent on distinct [Ca2+]i responses. Here, we review the components of the Ca2+ toolkit present in mammalian oocytes and eggs, the regulatory mechanisms that allow these cells to accumulate Ca2+ in the endoplasmic reticulum, release it, and maintain basal and stable cytoplasmic concentrations. We also discuss electrophysiological and genetic studies that have uncovered Ca2+ influx channels in oocytes and eggs, and we analyze evidence supporting the role of a sperm-specific phospholipase C isoform as the trigger of Ca2+ oscillations during mammalian fertilization including its implication in fertility.
Journal: Cold Spring Harbor perspectives in biology
ISSN: 1943-0264
Issue: 12
Volume: 11
Publication year:2019
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:3
CSS-citation score:1
Authors:International
Authors from:Higher Education
Accessibility:Closed