< Back to previous page

Publication

Solar chromosphere heating and generation of plasma outflows by impulsively generated two-fluid Alfvén waves

Journal Contribution - Journal Article

Context. We address the heating of the solar chromosphere and the related generation of plasma in- and outflows. Aims. We attempt to detect variations in ion temperature and vertical plasma flows, which are driven by impulsively excited two-fluid Alfvén waves. We aim to investigate the possible contribution of these waves on the solar chromosphere heating and plasma outflows. Methods. We perform numerical simulations of the generation and evolution of Alfvén waves with the use of the JOANNA code, which solves the two-fluid equations for ions+electrons and neutrals, coupled by collision terms. Results. We confirm that the damping of impulsively generated small-amplitude Alfvén waves slightly a ect the chromosphere’s temperature and generate slow plasma flows. In contrast, the Alfvén waves generated by large-amplitude pulses increase the chromospheric plasma temperature more significantly and result in faster plasma outflows. The maximum heating occurs when the pulse is launched from the central photosphere, and the magnitude of the related plasma flows grows with the amplitude of the pulse. Conclusions. Large-amplitude two-fluid Alfvén waves can contribute significantly to the heating of the solar chromosphere and to the generation of plasma outflows.
Journal: Astronomy & Astrophysics
ISSN: 1432-0746
Volume: 652
Publication year:2021
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:2
CSS-citation score:1
Authors:International
Authors from:Higher Education
Accessibility:Open