< Back to previous page

Project

Low dose in situ electron microscopy study on metal halide perovskites: Unravelling the role of defects and degradation mechanisms under bias, oxygen and moisture.

Metal halide perovskites (MHP) are promising semiconductors for the next generation of optoelectronic applications because of their excellent performance and low-cost processability. Unfortunately, applications are hampered by the lack of stability when MHPs are exposed to relevant conditions. To overcome this limitation, precise knowledge of the structure-property relationship in MHPs is required. Therefore, this project aims to develop novel and advanced transmission electron microscopy (TEM) techniques for in situ experiments, during which MHPS will be exposed to environmental conditions. Hereby, the development of low dose TEM techniques is crucial because of the high electron beam-sensitivity of MHPs. These techniques will be combined with in situ experiments under heat, gaseous environment, and high bias. Based on the outcome of my experiments, I will be able to provide a better understanding of promising stabilization methods such as interfacial clamping. I will hereby reveal the influence of interfacial defects and grain boundary types in textured MHP thin films. Moreover, the local results obtained by TEM will yield novel insights on degradation mechanisms under high bias, oxygen or moisture. In this manner, my project will provide the necessary input to trigger novel strategies for long-term stability of MHPs.
Date:1 Oct 2021 →  Today
Keywords:NANOSCALE ANALYSIS, ELECTRON MICROSCOPY
Disciplines:Surfaces, interfaces, 2D materials, Phase transformations, Nanomaterials, Nanoscale characterisation, Solar energy
Project type:Collaboration project