< Back to previous page

Project

Establishing innovative approaches for optimal infection prevention of resistant bacteria in NICUs by integrating research, implementation science and surveillance in a sustainable global platform (NeoIPC). (NeoIPC)

Around 10% of newborns in Europe will be admitted to a neonatal intensive care unit (NICU). Critically ill babies are a highly vulnerable population for the acquisition of resistant bacteria. Sepsis is among the most common events in NICU and is known to be associated with high mortality and poor long-term outcomes. Despite rising awareness of high rates of resistant bacterial colonisation reported in NICU, there is very little robust specific data on globally applicable infection prevention and control (IPC) measures. NeoIPC focuses on new approaches to the prevention and management of resistant bacterial colonization and infection on NICU. The project builds on and further extends the collaboration between 13 partners with a proven track record in relevant areas, including neonatal infection, IPC, implementation science, microbiology and surveillance. NeoIPC aims to develop and implement an innovative approach towards the evaluation of IPC interventions combining a robust cost-efficient randomised trial combined with the evaluation of a suitable implementation science strategy and novel targeted clinical and genotypic surveillance. A further goal is to generate widely relevant pan-European network strategies to improve IPC in routine neonatal care. This will be achieved through six interrelated work packages to deliver a cluster randomised trialimplementation hybrid investigating the impact of skin antisepsis on infant hospital-acquired clinical sepsis and resistant bacterial colonisation, coupled with a comprehensive implementation strategy incorporating optimal targeted surveillance in a clinical network with tailored dissemination and exploitation to facilitate sustainable embedding of outputs. NeoIPC will generate globally transferrable outputs to reduce hospital transmission of resistant pathogens, foster and facilitate collaborative research and IPC implementation efforts with a broad and long-lasting impact for critically ill newborns and infants.
Date:1 Apr 2021 →  Today
Keywords:INFECTION CONTROL, BACTERIAL RESISTANCE
Disciplines:Bacteriology, Infectious diseases, Microbiome
Project type:Collaboration project