< Back to previous page

Publication

Interstitial defects in the van der Waals gap of $Bi_{2}Se_{3}$

Journal Contribution - Journal Article

Bi2Se3 is a thermoelectric material and a topological insulator. It is slightly conducting in its bulk due to the presence of defects and by controlling the defects different physical properties can be fine tuned. However, studies of the defects in this material are often contradicting or inconclusive. Here, the defect structure of Bi2Se3 is studied with a combination of techniques: high-resolution scanning transmission electron microscopy (HR-STEM), high-resolution energy-dispersive X-ray (HR-EDX) spectroscopy, precession electron diffraction tomography (PEDT), X-ray diffraction (XRD) and first-principles calculations using density functional theory (DFT). Based on these results, not only the observed defects are discussed, but also the discrepancies in results or possibilities across the techniques. STEM and EDX revealed interstitial defects with mainly Bi character in an octahedral coordination in the van der Waals gap, independent of the applied sample preparation method (focused ion beam milling or cryo-crushing). The inherent character of these defects is supported by their observation in the structure refinement of the EDT data. Moreover, the occupancy probability of the defects determined by EDT is inversely proportional to their corresponding DFT calculated formation energies. STEM also showed the migration of some atoms across and along the van der Waals gap. The kinetic barriers calculated using DFT suggest that some paths are possible at room temperature, while others are most probably beam induced.
Journal: Acta Crystallographica. Section B: Structural Science, Crystal Engineering and Materials (Online)
ISSN: 2052-5206
Volume: 75
Pages: 717 - 732
Publication year:2019
Keywords:A1 Journal article
BOF-keylabel:yes
BOF-publication weight:1
CSS-citation score:1
Authors from:Higher Education
Accessibility:Open