< Back to previous page

Publication

Machine learning approach to constructing tight binding models for solids with application to BiTeCl

Journal Contribution - e-publication

Finding a tight-binding (TB) model for a desired solid is always a challenge that is of great interest when, e.g., studying transport properties. A method is proposed to construct TB models for solids using machine learning (ML) techniques. The approach is based on the LCAO method in combination with Slater-Koster (SK) integrals, which are used to obtain optimal SK parameters. The lattice constant is used to generate training examples to construct a linear ML model. We successfully used this method to find a TB model for BiTeCl, where spin-orbit coupling plays an essential role in its topological behavior.
Journal: Journal of applied physics
ISSN: 0021-8979
Volume: 128
Publication year:2020
Keywords:A1 Journal article
BOF-keylabel:yes
BOF-publication weight:1
CSS-citation score:1
Authors:International
Authors from:Higher Education
Accessibility:Closed