< Back to previous page

Publication

Symmetric explanation learning: Effective dynamic symmetry handling for SAT

Book Contribution - Book Chapter Conference Contribution

© Springer International Publishing AG 2017. The presence of symmetry in Boolean satisfiability (SAT) problem instances often poses challenges to solvers. Currently, the most effective approach to handle symmetry is by static symmetry breaking, which generates asymmetric constraints to add to the instance. An alternative way is to handle symmetry dynamically during solving. As modern SAT solvers can be viewed as propositional proof generators, adding a symmetry rule in a solver’s proof system would be a straightforward technique to handle symmetry dynamically. However, none of these proposed symmetrical learning techniques are competitive to static symmetry breaking. In this paper, we present symmetric explanation learning, a form of symmetrical learning based on learning symmetric images of explanation clauses for unit propagations performed during search. A key idea is that these symmetric clauses are only learned when they would restrict the current search state, i.e., when they are unit or conflicting. We further provide a theoretical discussion on symmetric explanation learning and a working implementation in a state-of-the-art SAT solver. We also present extensive experimental results indicating that symmetric explanation learning is the first symmetrical learning scheme competitive with static symmetry breaking.
Book: Theory and Applications of Satisfiability Testing - SAT 2017, proceedings
Pages: 83 - 100
ISBN:978-3-319-66262-6
Publication year:2017
Accessibility:Open