< Back to previous page

Publication

Cuprizone-induced demyelination and demyelination-associated inflammation result in different proton magnetic resonance metabolite spectra

Journal Contribution - Journal Article

Conventional MRI is frequently used during the diagnosis of multiple sclerosis but provides only little additional pathological information. Proton MRS (H-1-MRS), however, provides biochemical information on the lesion pathology by visualization of a spectrum of metabolites. In this study we aimed to better understand the changes in metabolite concentrations following demyelination of the white matter. Therefore, we used the cuprizone model, a wellestablished mouse model to mimic type III human multiple sclerosis demyelinating lesions. First, we identified CX(3)CL1/CX(3)CR1 signaling as a major regulator of microglial activity in the cuprizone mouse model. Compared with control groups (heterozygous CX(3)CR1(+/-) C57BL/6 mice and wild type CX3CR1(+/+) C57BL/6 mice), microgliosis, astrogliosis, oligodendrocyte cell death and demyelination were shown to be highly reduced or absent in CX3CR1(-/-) C57BL/6 mice. Second, we show that 1H-MRS metabolite spectra are different when comparing cuprizone-treated CX3CR1(-/-) mice showing mild demyelination with cuprizone-treated CX3CR1(+/+) mice showing severe demyelination and demyelination-associated inflammation. Following cuprizone treatment, CX3CR1(+/+) mice show a decrease in the Glu, tCho and tNAA concentrations as well as an increased Tau concentration. In contrast, following cuprizone treatment CX3CR1(-/-) mice only showed a decrease in tCho and tNAA concentrations. Therefore, H-1-MRS might possibly allow us to discriminate demyelination from demyelination-associated inflammation via changes in Tau and Glu concentration. In addition, the observed decrease in tCho concentration in cuprizoneinduced demyelinating lesions should be further explored as a possible diagnostic tool for the early identification of human MS type III lesions. Copyright (C) 2015 John Wiley & Sons, Ltd.
Journal: NMR in biomedicine
ISSN: 0952-3480
Volume: 28
Pages: 505 - 513
Publication year:2015
Keywords:A1 Journal article
BOF-keylabel:yes
BOF-publication weight:2
CSS-citation score:1
Authors from:Higher Education
Accessibility:Open