< Back to previous page

Publication

Developmental and Degenerative Cerebellar Pathologies in Peroxisomal β-Oxidation Deficiency

Journal Contribution - Journal Article

The integrity of the cerebellum is exquisitely dependent on peroxisomal β-oxidation metabolism. Patients with peroxisomal β-oxidation defects commonly develop malformation, leukodystrophy, and/or atrophy of the cerebellum depending on the gene defect and on the severity of the mutation. By analyzing mouse models lacking the central peroxisomal β-oxidation enzyme, multifunctional protein-2 (MFP2), either globally or in selected cell types, insights into the pathomechanisms could be obtained. All mouse models developed ataxia, but the onset was earlier in global and neural-selective (Nestin) Mfp2-/- knockout mice as compared to Purkinje cell (PC)-selective Mfp2 knockouts.At the histological level, this was associated with developmental anomalies in global and Nestin-Mfp2-/- mice, including aberrant wiring of PCs by parallel and climbing fibers and altered electrical properties of PCs. In all mouse models, dystrophy of PC axons with swellings initiating in the deep cerebellar nuclei and evolving to the proximal axon, preceded death of PCs. These degenerative features are in part mediated by deficient peroxisomal β-oxidation within PCs but are accelerated when MFP2 is also absent from other neural cell types. The metabolic causes of the diverse cerebellar pathologies remain unknown.In conclusion, peroxisomal β-oxidation is required both for the development and for the maintenance of the cerebellum. This is mediated by PC autonomous and nonautonomous mechanisms.
Journal: Advances in Experimental Medicine and Biology
ISSN: 0065-2598
Volume: 1299
Pages: 105 - 115
Publication year:2020
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:1
CSS-citation score:1
Authors from:Higher Education
Accessibility:Open