< Back to previous page

Publication

Vortex detection and quantum transport in mesoscopic graphene Josephson-junction arrays

Journal Contribution - e-publication

We investigate mesoscopic Josephson-junction arrays created by patterning superconducting disks on monolayer graphene, concentrating on the high-T/T-c regime of these devices and the phenomena which contribute to the superconducting glass state in diffusive arrays. We observe features in the magnetoconductance at rational fractions of flux quanta per array unit cell, which we attribute to the formation of flux-quantized vortices. The applied fields at which the features occur are well described by Ginzburg-Landau simulations that take into account the number of unit cells in the array. We find that the mean conductance and universal conductance fluctuations are both enhanced below the critical temperature and field of the superconductor, with greater enhancement away from the graphene Dirac point.
Journal: Physical review : B : condensed matter and materials physics
ISSN: 1098-0121
Volume: 91
Publication year:2015
Keywords:A1 Journal article
BOF-keylabel:yes
BOF-publication weight:2
CSS-citation score:1
Authors:International
Authors from:Higher Education
Accessibility:Open