< Back to previous page

Publication

The impact of food model system structure on the inactivation of Listeria innocua by cold atmospheric plasma and nisin combined treatments

Journal Contribution - Journal Article

Novel processing methods such as cold atmospheric plasma (CAP) and natural antimicrobials like nisin, are of interest to replace traditional food decontamination approaches as, due to their mild nature, they can maintain desirable food characteristics, i.e., taste, texture, and nutritional content. However, the microbial growth characteristics (planktonic growth/surface colonies) and/or the food structure itself (liquid/solid surface) can impact the inactivation efficacy of these novel processing methods. More specifically, cells grown as colonies on a solid(like) surface experience a completely different growth environment to cells grown planktonically in liquid, and thus could display a different response to novel processing treatments through stress adaptation and/or cross protection mechanisms. The order in which combined treatments are applied could also impact their efficacy, especially if the mechanisms of action are complementary. This work presents a fundamental study on the efficacy of CAP and nisin, alone and combined, as affected by food system structure. More specifically, Listeria innocua was grown planktonically (liquid broth) or on a viscoelastic Xanthan gum gel system (1.5% w/v) and treated with CAP, nisin, or a combination of the two. Both the inactivation system, i.e., liquid versus solid(like) surface and the growth characteristics, i.e., planktonic versus colony growth, were shown to impact the treatment efficacy. The combination of nisin and CAP was more effective than individual treatments, but only when nisin was applied before the CAP treatment. This study provides insight into the environmental stress response/adaptation of L. innocua grown on structured systems in response to natural antimicrobials and novel processing technologies, and is a step towards the faster delivery of these food decontamination methods from the bench to the food industry.
Journal: International Journal of Food Microbiology
ISSN: 0168-1605
Volume: 337
Publication year:2021
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:3
CSS-citation score:3
Authors:International
Authors from:Higher Education
Accessibility:Open