< Back to previous page

Project

Power to olefins: Computation fluid dynamics simulations of electrified rotor stator steam cracking reactor.

Steam cracking is and will remain the most commonly applied technology for the production of lower olefins in the common decades. However, it faces some major environmental issues as the furnaces of the steam crackers in Flanders are responsible for 50% of the total CO2 emission of the chemical industry. A radically new reactor concept for drastic heat transfer intensification, that will be investigated in this project, is that of an electrified rotor stator reactor, a gas-turbine like design which enables temperature increases to >1000°C at an order of magnitude faster compared to state-of-the-art furnaces (from 200 ms to 10 ms based on preliminary CFD simulations), without increasing pressure. The reason for this is found in the fact that it transforms kinetic energy, obtained via the electrically driven rotor, into heat via stators while the isobaric operation is caused by enhanced mixing in the foreseen vaneless space, where also the majority of the reactions occur. If the proposed project is successful, the valorisation potential in the petrochemical industry will be enormous as it will pave the way for a paradigm shift in the way olefins are produced; from fossil fuel combustion-based steam cracking to electrified olefins production with much higher yields (>65% increase in ethylene production from a given naphtha stream) and thereby process economics, and much lower environmental impact (90% reduction in CO2 emissions).

Date:1 Nov 2020 →  Today
Keywords:Steam cracking, Computational Fluid Dynamics, Electrification of the chemical industry
Disciplines:Modelling, simulation and optimisation, Reacting systems, (Bio)chemical reactors, Intensification, Heat and mass transfer