< Back to previous page

Publication

Adaptive fog service placement for real-time topology changes in Kubernetes clusters

Book Contribution - Book Chapter Conference Contribution

Recent trends have caused a shift from services deployed solely in monolithic data centers in the cloud to services deployed in the fog (e.g. roadside units for smart highways, support services for IoT devices). Simultaneously, the variety and number of IoT devices has grown rapidly, along with their reliance on cloud services. Additionally, many of these devices are now themselves capable of running containers, allowing them to execute some services previously deployed in the fog. The combination of IoT devices and fog computing has many advantages in terms of efficiency and user experience, but the scale, volatile topology and heterogeneous network conditions of the fog and the edge also present problems for service deployment scheduling. Cloud service scheduling often takes a wide array of parameters into account to calculate optimal solutions. However, the algorithms used are not generally capable of handling the scale and volatility of the fog. This paper presents a scheduling algorithm, named "Swirly", for large scale fog and edge networks, which is capable of adapting to changes in network conditions and connected devices. The algorithm details are presented and implemented as a service using the Kubernetes API. This implementation is validated and benchmarked, showing that a single threaded Swirly service is easily capable of managing service meshes for at least 300.000 devices in soft real-time.
Book: PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND SERVICES SCIENCE (CLOSER)
Pages: 161 - 170
ISBN:9789897584244
Publication year:2020
Accessibility:Closed