< Back to previous page

Publication

Differential sensitivity of fatty acids and lipid damage in Microcystis aeruginosa (cyanobacteria) exposed to increased temperature

Journal Contribution - Journal Article

Changes in fatty acid (FA) composition can mean a mechanism of acclimation of Cyanobacteria to climate change. The objective of the present study was to evaluate the effects of increased temperature on M. aeruginosa cultures in terms of FA content, lipid damage, biomass and reactive oxygen species (ROS). Unicellular cultures were exposed to high (29 degrees C) and control (26 degrees C) temperature for 12 days. Differential sensitivity of omega 3 FAs was observed after 2 days of exposure to elevated temperature (29 degrees C). Also, no significant differences in ROS content at different temperatures were observed although there was a significant decrease compared to the value at the start of the incubation. Thus, low FA peroxidation of selected omega 6 PUFAs and potentially increased activation of antioxidant systems, resulting in lower lipid damage (on average 35%), could explain the strong acclimation to high temperature as shown by the increased growth rate (11%) compared to the control conditions. In high temperature conditions we found a retarded desaturation to 18:3 omega 3 and 18:4 omega 3 PUFAs which were 40% lower compared with control at the end of incubation. Overall, growth rate and omega-6 FA were increased at high temperature as a mechanism of successful acclimation. This is highly relevant for the ecological role of M. aeruginosa as food source for grazers. A reduced FA level can have serious implications for the flow of energy and thus the overall functioning of the ecosystem.
Journal: COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY C - TOXICOLOGY & PHARMACOLOGY
ISSN: 1878-1659
Volume: 235
Publication year:2020
Accessibility:Open