< Back to previous page

Publication

Identification of microalgae biorefinery scenarios and development of mass and energy balance flowsheets

Journal Contribution - Journal Article

The notion of bioeconomy is at the basis of recent European strategies aiming at conciliating economic growth and sustainability. Consequently, extensive research has been conducted on biobased solutions such as microalgae products. Numerous initiatives to commercialize microalgae have been launched but few of them were successful. Algae biofuel is the most obvious illustration with its promises as energy supply but faces many challenges to become economically competitive. Consequently, it was recently proposed to develop microalgae biorefineries for an optimal biomass valorisation, to dilute the overall costs within a wide range of products. Herein, the energy demand for different microalgae biorefinery scenarios is investigated and critical steps identified. Each scenario is modelled using information from literature and process engineering principles. The production of lipids, proteins, methane, fertilizers and dried biomass are considered. Once defined, the scenarios are modelled and their energy inputs are discussed. We also investigate the impact of using a biobased solvent for lipid extraction instead of a conventional one. On top of that, each scenario is assessed for two cells disruption methods. In both cases, the study starts with dewatering the growth medium of the microalgae Chlorella vulgaris (240 kg DW h−1) and ends with the recovery of the products. The results vary from 20.07 to 66.53 MJ kg−1 input DW and highlight the importance of the cell disruption method in the total energy demand. While lipid extraction presents adverse impacts on proteins extraction due to solvent recovery, proteins extraction has beneficial effects on further methane production step. Our study concludes with the comparison of microalgae biomass with soy, for proteins and lipids production, and demonstrates quantitatively that microalgae-based technologies are still inefficient compared to present alternatives. This work provides quantitative numbers for further evaluation of microalgae projects considering the current stage of the technology.
Journal: ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS
ISSN: 2211-9264
Volume: 45
Publication year:2020
Accessibility:Closed