< Back to previous page

Project

3D printing of drug loaded medical devices for personalized medicine.

Additive manufacturing (AM) technologies have been extensively used in many fields and applications. Personalized medicine is one of the most promising fields that could benefit from such technologies. The Food and drug administration (FDA) approved in 2016 the first drug loaded device produced via AM introduced by Aprecia Pharmaceuticals. Fused filament fabrication (FFF) is one of the AM technologies that rely on the extrusion of a melted polymeric material through a nozzle. The consecutive movement in three-dimensional space while extruding material results in producing objects with high geometrical complexity. Such produced objects were not possible to build through conventional manufacturing technologies. This technology specifically has high potential in the pharmaceutical sector as it relies on a well-known technology used for producing drug loaded polymeric formulations, called hot melt extrusion (HME). In this technology a carrier polymer is mixed with a known active pharmaceutical ingredient (API) using a screw extrusion system and then hot extruded through a die for further processing. This project is a continuation of the PrintAID ITN-project. It aims at utilizing 3D-printing technologies for printing anti-infective medical devices. These devices should have the ability to prevent biofilm-related infections. Selected antibacterial agents will be analyzed for their thermal stability as the 3D printing process uses heat for processing. On the other hand, thermoplastic polymers will be investigated for their mechanical, rheological and thermal properties and the best ones will be selected as carrier for the antibacterial agents. The fused filament fabrication 3D printing technology will be modified and used to produce medical devices using the selected formulation. The modification will focus on reconfiguring the extrusion system to convert it from a conventional filament extruder to a pellet extruder, thereby providing more versatility in material selection. These devices will be analyzed in terms of mechanical integrity and formulation stability. in vitro and in vivo samples will be produced to study the release profile and the killing efficacy of the selected APIs. The intended goal is to produce proof-of-concept devices to tackle bacterial-associated infections on indwelling devices such as endotracheal tubes.
Date:1 May 2020 →  30 Apr 2022
Keywords:BIOFILMS
Disciplines:Bacteriology