< Back to previous page

Publication

Pharmaceutical analysis combined with in-silico therapeutic and toxicological profiling on zileuton and its impurities to assist in modern drug discovery

Journal Contribution - Journal Article

The obligatory testing of drug molecules and their impurities to protect users against toxic compounds seems to provide interesting opportunities for new drug discovery. Impurities, which proved to be non-toxic, may be explored for their own therapeutic potential and thus be a part of future drug discovery. The essential role of pharmaceutical analysis can thus be extended to achieve this purpose. The present study examined these objectives by characterizing the major degradation products of zileuton (ZLT), a 5-lipoxygenase (5-LOX) inhibitor being prevalently used to treat asthma. The drug sample was exposed to forced degradation and found susceptible to hydrolysis and oxidative stress. The obtained Forced Degradation Products (FDP's) were resolved using an earlier developed and validated Ultra-High-Pressure Liquid Chromatography Photo-Diode-Array (UHPLC-PDA) protocol. ZLT, along with acid-and alkali-stressed samples, were subjected to Liquid-chromatography Mass-spectrometry Quadrupole Time-of-flight (LC/MS-QTOF) studies. Major degradation products were isolated using Preparative TLC and characterized using Q-TOF and/or Proton nuclear magnetic resonance (1HNMR) studies. The information obtained was assembled for structural conformation. Toxicity Prediction using Komputer Assisted Technology (TOPKAT) toxicity analyses indicated some FDP's as non-toxic when compared to ZLT. Hence, these non-toxic impurities may have bio-affinity and can be explored to interact with other therapeutic targets, to assist in drug discovery. The drug molecule and the characterized FDP's were subjected to 3-Dimensional Extra Precision (3D-XP)-molecular docking to explore changes in bio-affinity for the 5-LOX enzyme (PDB Id: 3V99). One FDP was found to have a higher binding affinity than the drug itself, indicating it may be a suitable antiasthmatic. The possibility of being active at other sites cannot be neglected and this is evaluated to a reasonable extent by Prediction of Activity Spectra for Substances (PASS). Besides being antiasthmatic, some FDP's were predicted antineoplastic, antiallergic and inhibitors of Complement Factor-D.

Journal: J Pharm Biomed Anal739-52.
ISSN: 0731-7085
Volume: 179
Publication year:2020
CSS-citation score:1
Accessibility:Open