< Back to previous page

Publication

Degradation pathways in standard and inverted DBP-C-70 based organic solar cells

Journal Contribution - Journal Article

Achieving long-term stability in organic solar cells is a remaining bottleneck for the commercialization of this otherwise highly appealing technology. In this work, we study the performance and stability differences in standard and inverted DBP/C-70 based organic solar cells. Differences in the charge-transfer state properties of inverted and standard configuration DBP/C-70 solar cells are revealed by sensitive external quantum efficiency measurements, leading to differences in the open-circuit voltages of the devices. The degradation of standard and inverted solar cell configurations at ISOS aging test conditions (ISOS-D-3 and ISOS-T-3) was investigated and compared. The results indicate that the performance drop in the small molecule bilayer solar cells is less related to changes at the D-A interface, suggesting also a pronounced morphological stability, and instead, in the case of inverted cells, dominated by degradation at the electron transport layer (ETL) bathocuproine (BCP). Photoluminescence measurements, electron-only-device characteristics, and stability measurements show improved exciton blocking, electron transport properties and a higher stability for BCP/Ag ETL stacks, giving rise to inverted devices with enhanced performance and device stability.
Journal: Scientific reports
ISSN: 2045-2322
Volume: 9
Publication year:2019
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:2
CSS-citation score:1
Authors:International
Authors from:Higher Education
Accessibility:Open