< Back to previous page

Publication

Biocompatible lipid‐coated persistent luminescent nanoparticles for in vivo imaging of dendritic cell migration

Journal Contribution - Journal Article

Dendritic cell (DC)-based vaccines for immunotherapy have already achieved promising results in the last decade. To further improve current treatment protocols and enhance the therapeutic outcome, noninvasive in vivo tracking of DCs remains of crucial importance. Persistent luminescent nanoparticles (PLNPs) are inorganic materials which show an afterglow for hours after the optical excitation has ceased. If the afterglow is in the near-infrared, the emission of injected particles can be tracked in vivo. However, stability and toxicity issues limit the use of bare PLNPs for biological applications. Therefore, appropriate surface functionalization is needed to improve their biocompatibility. In this study, it is demonstrated that near-infrared light emitting LiGa5O8:Cr3+ nanoparticles can be functionalized with a biocompatible lipid coating which provides them with outstanding stability in biological media. In vitro experiments show efficient uptake, absence of cytotoxicity even at very high particle concentrations, and no adverse effects on the maturation potential of DCs. DCs labeled with lipid-coated LiGa5O8:Cr3+ nanoparticles injected in mice can be imaged over days, confirming efficient in vivo migration to the popliteal lymph node. Together the results show that lipid coated LiGa5O8:Cr3+ nanoparticles possess excellent possibilities for further use in research and development of DC based vaccines.
Journal: PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION
ISSN: 1521-4117
Issue: 11
Volume: 36
Publication year:2019
BOF-keylabel:yes
IOF-keylabel:yes
BOF-publication weight:0.1
Authors:National
Authors from:Higher Education
Accessibility:Closed