< Back to previous page

Project

Three-Dimensional Analysis of Assemblies of Nanoparticles at the Atomic Scale.

Nano assemblies are two- or three-dimensional (3D) collections of nanoparticles. The properties of the assemblies are determined by the number of particles, their position, shape and chemical nature as well as the bonding between them. If we are able to determine these parameters in 3D, we will be able to provide the necessary input for predicting the properties and we can guide the synthesis and development of new assemblies or superstructures. The aim of this project is therefore to provide a complete 3D characterization of complex assemblies down to the atomic scale. We will reach this goal by combining advanced electron microscopy and novel 3D reconstruction algorithms. So far, 3D imaging of nano assemblies was performed for relatively small, model-like systems, consisting of spherical nanoparticles. Here, we will perform 3D measurements of larger and more complex assemblies consisting of anisotropic particles as well as binary systems in which the particles may have different compositions or sizes. Through aberration corrected TEM, we will also investigate the driving forces behind self assembly or oriented attachment at the atomic level. This project will have major impact for a broad range of applications such as drug delivery, magnetic recording or surface enhanced raman scattering. Once the connection between structure and properties is understood, the synthesis of complex assemblies can be optimized and the development of novel materials will be triggered.
Date:1 Oct 2016 →  31 Dec 2018
Keywords:NANOSCIENCE
Disciplines:Condensed matter physics and nanophysics
Project type:Collaboration project